1,911 research outputs found

    A theoretical and computational study of the mechanics of biomembranes at multiple scales

    Get PDF
    Lipid membranes are thin objects that form the main separation structure in cells. They have remarkable mechanical properties; while behaving as a solid shell against bending, they exhibit in-plane fluidity. These two aspects of their mechanics are not only interesting from a physical viewpoint, but also fundamental for their biological function. Indeed, the equilibrium shapes of different organelles in the cell rely on the bending elasticity of lipid membranes. On the other hand, the in-plane fluidity of the membrane is essential in functions such as cell motility, mechano-adaptation, or for the lateral diffusion of proteins and other membrane inclusions. The bending rigidity of membranes can be motivated from microscopic models that account for the stress distribution across the membrane thickness. In particular, the microscopic stress across the membrane is routinely computed from molecular dynamics simulations to investigate how different microscopic features, such as the addition of anesthetics or cholesterol, affect their effective mechanical response. The microscopic stress bridges the gap between the statistical mechanics of a set of point particles, the atoms in a molecular dynamics simulation, and continuum mechanics models. However, we lack an unambiguous definition of the microscopic stress, and different definitions of the microscopic stress suggest different connections between molecular and continuum models. In the first Part of this Thesis, we show that many of the existing definitions of the microscopic stress do not satisfy the most basic balance laws of continuum mechanics, and thus are not physically meaningful. This striking issue has motivated us to propose a new definition of the microscopic stress that complies with these fundamental balance laws. Furthermore, we provide a freely available implementation of our stress definition that can be computed from molecular dynamics simulations (mdstress.org). Our definition of the stress along with our implementation provides a foundation for a meaningful analysis of molecular dynamics simulations from a continuum viewpoint. In addition to lipid membranes, we show the application of our methodology to other important systems, such as defective crystals or fibrous proteins. In the second part of the Thesis, we focus on the continuum modeling of lipid membranes. Because these membranes are continuously brought out-of-equilibrium by biological activity, it is important to go beyond curvature elasticity and describe the internal mechanisms associated with bilayer fluidity. We develop a three-dimensional and non-linear theory and a simulation methodology for the mechanics of lipid membranes, which have been lacking in the field. We base our approach on a general framework for the mechanics of dissipative systems, Onsager's variational principle, and on a careful formulation of the kinematics and balance principles for fluid surfaces. For the simulation of our models, we follow a finite element approach that, however, requires of unconventional dicretization methods due to the non-linear coupling between shape changes and tangent flows on fluid surfaces. Our formulation provides the basis for further investigations of the out-of-equilibrium chemo-mechanics of lipid membranes and other fluid surfaces, such as the cell cortex.Las membranas lipídicas son estructuras delgadas que forman la separación fundamental de las células. Tienen propiedades físicas notables: mientras que se comportan como láminas delgadas sólidas frente a curvatura, presentan fluidez interfacial. Estos dos aspectos de su mecánica son interesantes desde un punto de vista físico e ingenieril, pero además son fundamentales para su función biológica. Las formas de equilibrio de diferentes organelos celulares dependen de la elasticidad frente a curvatura de la membrana lipídica. Por otro lado, la fluidez interfacial es esencial en funciones como la movilidad celular, la adaptación mecánica a deformaciones, o para la difusión lateral de proteínas. La elasticidad frente a curvatura de las membranas lipídicas puede motivarse a través de modelos microscópicos que tienen en cuenta la distribución de esfuerzos a lo largo del espesor de la membrana. En particular, el tensor de esfuerzos microscópico se calcula habitualmente en simulaciones de dinámica molecular a lo largo del espesor de la membrana para investigar cómo diferentes características microscópicas, como la adición de anestésicos o colesterol, afecta la respuesta mecánica efectiva. El tensor de esfuerzos microscópico tiende un puente entre la mecánica estadística de un conjunto de partículas puntuales, los átomos de una simulación de dinámica molecular, y modelos de mecánica de medios continuos. Sin embargo, no disponemos de una definición única del tensor de esfuerzos microscópico, y diferentes definiciones dan lugar a diferentes interpretaciones de la conexión entre modelos moleculares y continuos. En la primera parte de la tesis, mostramos que muchas de las definiciones del tensor de esfuerzos microscópico no satisfacen las leyes más básicas de la mecánica de medios continuos, y por tanto no son físicamente relevantes. Este problema nos ha motivado a proponer una nueva definición del tensor de esfuerzos microscópicos que cumpla las leyes fundamentales de la mecánica de medios continuos por construcción. Además, hemos desarrollado (y puesto a disposición del público libremente) una implementación numérica de nuestra definición del tensor de esfuerzos microscópico que puede calcularse mediante simulaciones de dinámica molecular (mdstress.org). Nuestra definición del tensor de esfuerzos, así como nuestra implementación del mismo, proporcionan una base sólida para el análisis de simulaciones de dinámica molecular desde un punto de vista continuo. Además de membranas lipídicas, mostramos la aplicación de nuestro método en otros sistemas relevantes, como cristales con defectos o proteínas fibrosas. En la segunda parte de esta tesis nos hemos focalizado en el modelado continuo de membranas lipídicas. Ya que estas membranas están constantemente sufriendo actividad biológica que las lleva fuera de equilibrio, es importante tener en cuenta no sólo la elasticidad de curvatura, sino también los grados de libertad internos asociados a la fluidez de la membrana. Para ello, desarrollamos un nuevo marco teórico y computacional general, tridimensional y no-lineal, para la mecánica de membranas lipídicas. Nuestro enfoque se basa en un marco general para la mecánica de sistemas disipativos, el principio variacional de Onsager, y en una formulación cuidadosa de la cinemática y las ecuaciones de balance para superficies fluídas. Para la simulación de nuestros modelos, seguimos una aproximación basada en elementos finitos que, sin embargo, requiere de métodos no convencionales debido al acoplamiento no-lineal entre cambios de forma y los campos de velocidad tangentes en superficies fluídas. Nuestra formulación proporciona la base para futuras investigaciones de la quimiomecánica fuera de equilibrio de membranas lipídicas y otras superficies fluídas, como el cortex celula

    Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

    Full text link
    We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.Comment: 16 pages, 6 figure

    Onsager’s variational principle in soft matter : introduction and application to the dynamics of adsorption of proteins onto fluid membranes

    Get PDF
    This book is the first collection of lipid-membrane research conducted by leading mechanicians and experts in continuum mechanics. It brings the overall intellectual framework afforded by modern continuum mechanics to bear on a host of challenging problems in lipid membrane physics. These include unique and authoritative treatments of differential geometry, shape elasticity, surface flow and diffusion, interleaf membrane friction, phase transitions, electroelasticity and flexoelectricity, and computational modelling. [Chapter] Lipid bilayers are unique soft materials operating in general in the low Reynolds limit. While their shape is predominantly dominated by curvature elasticity as in a solid shell, their in-plane behavior is that of a largely inextensible viscous fluid. Furthermore, lipid membranes are extremely responsive to chemical stimuli. Because in their biological context they are continuously brought out-of-equilibrium mechanically or chemically, it is important to understand their dynamics. Here, we introduce Onsager’s variational principle as a general and transparent modeling tool for lipid bilayer dynamics. We introduce this principle with elementary examples, and then use it to study the sorption of curved proteins on lipid membranes.Peer ReviewedPostprint (author's final draft

    A variational model of fracture for tearing brittle thin sheets

    Get PDF
    Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.Fil: Li, Bin. Universidad Politécnica de Catalunya; España. Sorbonne Université; Francia. Centre National de la Recherche Scientifique; FranciaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Politécnica de Catalunya; EspañaFil: Torres Sánchez, Alejandro. Universidad Politécnica de Catalunya; EspañaFil: Roman, Benoît. Centre National de la Recherche Scientifique; Francia. Sorbonne Université; FranciaFil: Arroyo Balaguer, Marino. Universidad Politécnica de Catalunya; Españ

    Efeitos do solo e clima numa vinha de uva de mesa com cultura de cobertura. Gestão da rega utilizando redes de sensores

    Get PDF
    [ENG] TThe use of mulches in vineyards and orchards is a traditional agricultural practice used with the aim of saving moisture, reducing weed growth and improving organic matter content in the soil. In table grape vineyards trained to overhead system in Puglia region (Southeastern Italy), plastic sheets covering the canopy are often used to either advance ripening or delay harvest. In this environment, the living mulches could contribute to the modification of the microclimate around the canopy below the plastic sheets. This condition has an influence on the climatic demand and on both the vegetative and productive activities, mainly in stages with a high evapotranspiration. However, the presence of living mulches could increase the demand of available water and nutrient resources and this could cause a lower yield. The aim of this study was to acquire a suitable knowledge to manage irrigation and verify the influences of living mulches on the vine by using wireless sensor networks to measure the vapor pressure deficit, soil water potential and content.[POR] A utilização de coberturas do solo em vinhas e pomares é uma prática agrícola tradicional, utilizada com o objetivo de preservar a humidade do solo, reduzir o crescimento de infestantes e melhorar o teor de matéria orgânica no solo. Em vinhas de uva de mesa, conduzidas em sistema de pérgula na região de Puglia (sudeste da Itália), são frequentemente usadas coberturas de plástico para promover o avanço da maturação ou o atraso da colheita. Neste ambiente a utilização de enrelvamentos pode contribuir para a modificação do microclima do copado. Esta condição pode influenciar a demanda atmosférica, bem como a atividade vegetativa e reprodutiva da videira, principalmente em períodos de elevada evapotranspiração. No entanto, a presença do enrelvamento pode originar um aumento da demanda dos recursos disponíveis, nomeadamente água e nutrientes, o que poderá provocar uma quebra de produção. O objetivo deste estudo foi adquirir conhecimento para a gestão da rega e, simultaneamente, verificar a influência dos enrelvamentos na atividade da videira, usando para o efeito redes de sensores “sem fio” para medir o déficit de pressão de vapor, o potencial e o conteúdo de água no solo.The development of this work was supported by: The Spanish Ministry of Science and Innovation through the project RIDEFRUT (ref. AGL2013-49047-C2-1-R), the “Fundacion Seneca, Agencia de Ciencia y Tecnologia” of the Region of Murcia under the “Excelence Group Program”, and the Technical University of Cartagena under the PMPDI Program

    Modelling fluid deformable surfaces with an emphasis on biological interfaces

    Get PDF
    Fluid deformable surfaces are ubiquitous in cell and tissue biology, including lipid bilayers, the actomyosin cortex or epithelial cell sheets. These interfaces exhibit a complex interplay between elasticity, low Reynolds number interfacial hydrodynamics, chemistry and geometry, and govern important biological processes such as cellular traffic, division, migration or tissue morphogenesis. To address the modelling challenges posed by this class of problems, in which interfacial phenomena tightly interact with the shape and dynamics of the surface, we develop a general continuum mechanics and computational framework for fluid deformable surfaces. The dual solid–fluid nature of fluid deformable surfaces challenges classical Lagrangian or Eulerian descriptions of deforming bodies. Here, we extend the notion of arbitrarily Lagrangian–Eulerian (ALE) formulations, well-established for bulk media, to deforming surfaces. To systematically develop models for fluid deformable surfaces, which consistently treat all couplings between fields and geometry, we follow a nonlinear Onsager formalism according to which the dynamics minimizes a Rayleighian functional where dissipation, power input and energy release rate compete. Finally, we propose new computational methods, which build on Onsager’s formalism and our ALE formulation, to deal with the resulting stiff system of higher-order partial differential equations. We apply our theoretical and computational methodology to classical models for lipid bilayers and the cell cortex. The methods developed here allow us to formulate/simulate these models in their full three-dimensional generality, accounting for finite curvatures and finite shape changes. This article has been published in a revised form in Journal of fluid mechanics

    Prediseño Termodinámico de Compresores Axiales bajo la Hipótesis de Tridimensionalidad

    Get PDF
    Prediseño termodinámico de un compresor axial, en el cual, a partir de unas especificaciones, se obtienen una serie de salidas de dicho compresor. Este cálculo se lleva a cabo mediante Matlab, y un usuario puede realizar pruebas y analizar sus resultados mediante una Interfaz Gráfica. Los cálculos se realizan mediante dos hipótesis distintas; bidimensional y tridimensional

    Diseño de una planta de tratamiento de agua residual para el municipio de San Marcos departamento de Sucre

    Get PDF
    Trabajo de InvestigaciónDiseño de un sistema de tratamiento de agua residual para el municipio de San Marcos, en el departamento de Sucre, el cual busca tratar las aguas emanadas por el centro de sacrificio animal del municipio. Se diseñó un sistema anaerobio de flujo ascendente elegido a raíz de las condiciones demográficas de la zona. el diseño se inicia con el cálculo de las rejillas en el que se eliminan solidos de mayor tamaño, seguido de la trampa de grasas en el que se remueven las grasas que pueden taponar el sistema, luego un desarenador y posteriormente el reactor anaerobio con el que finaliza el tratamiento.PregradoIngeniero Civi
    corecore